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Abstract 

Binary operations on graphs are studied widely in graph theory ever since each of these operations 

has been introduced. The neighbourhood polynomial plays a vital role in describing the 

neighbourhood characteristics of the vertices of a graph.  In this study neighbourhood polynomial 

of graphs arising from the operations like conjunction, join and symmetric difference of certain 

classes of graphs are calculated and tried to characterize the nature of neighbourhood polynomial.  
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Introduction 

The neighbourhood polynomials of the graphs resulting from Cartesian product have been studied 

and some properties have been established in [3]. 

1.1. The operations on graphs in this study 

The operation of conjunction (∧) on graphs was introduced by Weichsel in 1963. For any two 

graphs𝐺1 and 𝐺2, it is denoted as 𝐺 = 𝐺1 ∧ 𝐺2 and is defined as 𝑉 𝐺 = 𝑉 𝐺1 × 𝑉 𝐺2 , two 

vertices  𝑢𝑖 , 𝑣𝑗  ,  𝑢𝑘 , 𝑣𝑙  are adjacent if 𝑢𝑖  adjacent to 𝑢𝑘  in𝐺1 and 𝑣𝑗 adjacent to 𝑣𝑙  in 𝐺2. Join of 

two graphs 𝐺1 and 𝐺2 is denoted as 𝐺 = 𝐺1 ∨ 𝐺2. In join, 𝑉 𝐺 = 𝑉 𝐺1 ∪ 𝑉 𝐺2 , edge set 

consists of edges of 𝐺1 and 𝐺2 together with all edges joining every vertex of 𝐺1 to every vertices 

of 𝐺2. The symmetric difference (⊕) between any two graphs 𝐺1 and 𝐺2, it is denoted as 

𝐺 = 𝐺1 ⊕𝐺2 and is defined as 𝑉 𝐺 = 𝑉 𝐺1 × 𝑉 𝐺2 , two vertices  𝑢𝑖 , 𝑣𝑗  ,  𝑢𝑘 , 𝑣𝑙  are adjacent 
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if either 𝑢𝑖  adjacent to 𝑢𝑘  in𝐺1 or 𝑣𝑗 adjacent to 𝑣𝑙  in 𝐺2 , but not the both. For notations and 

terminology we follow [2]. 

1.2. Neighbourhood complex and polynomial 

A complex on a finite set 𝒳 is a collection 𝒞 of subsets of𝒳, closed under certain predefined 

restriction. Each set in 𝒞 is called the face of the complex. In the neighbourhood complex 𝒩 𝐺  of 

a graph𝐺, 𝒳 = 𝑉 𝐺 , and faces are subsets of vertices that have a common neighbour. In [1] the 

neighbourhood polynomial of a graph 𝐺, is defined as 

𝑛𝑒𝑖𝑔𝑕𝐺 𝑥 =  𝑥 𝑢 𝑢∈𝒩(𝐺) .  

For example consider 𝐶4 with vertices  𝑎, 𝑏, 𝑐, 𝑑 . The neighbourhood complex 𝒩(𝐶4) of 𝐶4 is 

 𝜙,  𝑎 ,  𝑏 ,  𝑐 ,  𝑑 ,  𝑎, 𝑐 ,  𝑏, 𝑑  Since the empty set trivially has a common neighbour, each 

of the single vertices has a neighbour, the sets  𝑎, 𝑐 ,  𝑏, 𝑑  has two common neighbours (one is 

sufficient), but no three vertices have a common neighbour. The associated neighbourhood 

polynomial of 𝐶4is 𝑛𝑒𝑖𝑔𝑕𝐶4
 𝑥 = 1 + 4𝑥 + 2𝑥2.  

Similarly, the neighbourhood polynomials of certain standard graphs are as follows: 

1. 𝐾𝑛  - 𝑛𝑒𝑖𝑔𝑕𝐾𝑛  𝑥 =  1 + 𝑥 𝑛 − 𝑥𝑛 . 

2. 𝑃𝑛  - 𝑛𝑒𝑖𝑔𝑕𝑃𝑛  𝑥 = 1 + 𝑛𝑥 +  𝑛 − 2 𝑥2. 

3. 𝐶𝑛  – 𝑛𝑒𝑖𝑔𝑕𝐶4
 𝑥 =  

1 + 𝑛𝑥 + 𝑛𝑥2 , 𝑛 ≠ 4

1 + 𝑛𝑥 + 2𝑥2 , 𝑛 = 4
  . 

In this paper, neighbourhood polynomials for the graphs resulting from the binary operations of 

conjunction, join, and symmetric difference are calculated. Also tried to characterize some 

properties of the neighbourhood polynomial of the graph 𝐺 so formed. 

2. Main Results  

2.1 Conjunction of two graphs and their Neighbourhood Polynomials 

Lemma 2.1.1 The neighbourhood polynomial of mesh graph is  

1 + 𝑚𝑛𝑥 +  4𝑚𝑛 − 6 𝑚 + 𝑛 + 8 𝑥2 +  𝑚 − 2  𝑛 − 2  4𝑥3 + 𝑥4 . 

Proof.Consider the mesh graph 𝐺 = 𝑃𝑛 ∧ 𝑃𝑚 . In 𝑃𝑛 ∧ 𝑃𝑚  there are 𝑚𝑛 vertices. The empty set 

trivially has a neighbour and each of the 𝑚𝑛 single vertices has a neighbour. 

Now consider the figure 1, 𝑃5 ∧ 𝑃4 
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𝐺 = 𝑃5 ∧ 𝑃4 

  

The two element subsets   𝑎, 𝑘 ,  𝑗, 𝑡 ,  𝑏, 𝑙 ,  𝑖, 𝑠 ,  𝑐, 𝑚 ,  𝑕, 𝑟 ,  𝑑, 𝑥 ,  𝑔, 𝑞 ,  𝑒, 𝑜 ,

 𝑓, 𝑝  [𝑚 𝑛 − 2 = 5 4 − 2 = 10];   𝑎, 𝑐 ,  𝑏, 𝑑 ,  𝑐, 𝑒 ,  𝑗, 𝑕 ,  𝑖, 𝑔 ,  𝑕, 𝑓 ,  𝑘,𝑚 ,  𝑙, 𝑛 ,

 𝑚, 𝑜 ,  𝑡, 𝑟 ,  𝑠, 𝑞 ,  𝑟, 𝑝  [𝑛 𝑚 − 2 = 4 5 − 2 = 12]; and   𝑗, 𝑟  ,  𝑎,𝑚 ,  𝑖, 𝑞 ,  𝑏, 𝑛 ,

 𝑕, 𝑝 ,  𝑐, 𝑜 ,  𝑐, 𝑘 ,  𝑑, 𝑙 ,  𝑕, 𝑡 ,  𝑒,𝑚 ,  𝑔, 𝑠 ,  𝑓, 𝑟  [2 𝑚 − 2  𝑛 − 2 ]; have at least one 

common neighbour. The three element subsets having at least one common neighbour are 

  𝑐, 𝑒,𝑚 ,  𝑐, 𝑒, 𝑜 ,  𝑐,𝑚, 𝑜 ,  𝑒,𝑚, 𝑜 ,  𝑏, 𝑑, 𝑙 ,  𝑏, 𝑑, 𝑛 ,  𝑏, 𝑙, 𝑛 ,  𝑑, 𝑙, 𝑛 ,  𝑎, 𝑐, 𝑘 ,  𝑎, 𝑐,𝑚 ,

 𝑎, 𝑘,𝑚 ,  𝑐, 𝑘,𝑚 ,  𝑕, 𝑗, 𝑟 ,  𝑕, 𝑗, 𝑡 ,  𝑕, 𝑟, 𝑡 ,  𝑗, 𝑟, 𝑡 ,  𝑔, 𝑖, 𝑞 ,  𝑔, 𝑖, 𝑠 ,  𝑔, 𝑞, 𝑠 ,  𝑖, 𝑞, 𝑠 ,

 𝑓, 𝑕, 𝑝 ,  𝑓, 𝑕, 𝑟 ,  𝑓, 𝑝, 𝑟 ,  𝑕, 𝑝, 𝑟  [4 𝑚 − 2  𝑛 − 2 = 4 5 − 2  4 − 2 = 24] and 

  𝑐, 𝑒,𝑚, 𝑜 ,  𝑏, 𝑑, 𝑙, 𝑛  ,  𝑎, 𝑐, 𝑘,𝑚 ,  𝑕, 𝑗, 𝑟, 𝑡 ,  𝑔, 𝑖, 𝑞, 𝑠 ,  𝑓, 𝑕, 𝑝, 𝑟  [ 𝑚 − 2  𝑛 − 2 =

 5 − 2  4 − 2 = 6] are the four element subsets having at least one common neighbour. 

Thus for 𝐺 = 𝑃5 ∧ 𝑃4, the neighbourhood polynomial is  

𝑛𝑒𝑖𝑔𝑕𝐺 𝑥 = 1 + 20𝑥 + 34𝑥2 + 24𝑥3 + 6𝑥4. 

Generally, for 𝐺 = 𝑃𝑚 ∧ 𝑃𝑛 ,  

𝑛𝑒𝑖𝑔𝑕𝐺 𝑥 = 1 + 𝑚𝑛𝑥 + [4𝑚𝑛 − 6 𝑚 + 𝑛 + 8]𝑥2 + (𝑚 − 2)(𝑛 − 2)(4𝑥3 + 𝑥4). 

Figure 1 
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Corollary 2.1.2 The neighbourhood polynomial of 𝑃𝑚 ∧ 𝐾2is 1 + 2𝑚𝑥 + (2𝑚 − 4)𝑥2. 

Proof. We have, 

𝑛𝑒𝑖𝑔𝑕𝑃𝑚 ×𝑃𝑛
 𝑥 = 1 + 𝑚𝑛𝑥 + [4𝑚𝑛 − 6 𝑚 + 𝑛 + 8]𝑥2 + (𝑚 − 2)(𝑛 − 2)(4𝑥3 + 𝑥4). 

When 𝑛 = 2, we get, 𝑛𝑒𝑖𝑔𝑕𝑃𝑚 ×𝐾2
 𝑥 = 1 + 2𝑚𝑥 + (2𝑚 − 4)𝑥2. 

Lemma 2.1.3 The neighbourhood polynomial of 𝐶𝑚 ∧ 𝐶𝑛  is, 

1 + 𝑚𝑛𝑥 + 4𝑚𝑛 𝑥2 + 𝑥3 + 𝑚𝑛𝑥4 ,𝑚 ≠ 𝑛 ≠ 4. 

Proof. Consider, 𝐺 = 𝐶𝑚 ∧ 𝐶𝑛 ,𝑚 ≠ 𝑛 ≠ 4. From the definition of conjunction, for every 𝑣𝑗 ∈

𝑉 𝐺 , we have 𝑑 𝑣𝑗  = 4. That is, there corresponds 4 neighbours to every vertex 𝑣𝑗  of 𝐺 

To find set of vertices having at least one common neighbour, say 𝑣𝑗 , we compute,  4
2
 ,  4

3
 ,  4

4
 , of 

the four neighbouring vertices of 𝑣𝑗 . Since in 𝐺, there are 𝑚𝑛 vertices, in the neighbourhood 

complex of 𝐺 we have null set, 𝑚𝑛 single vertices, 𝑚𝑛 4
2
 = 6𝑚𝑛, two element subsets, 4𝑚𝑛 three 

element subsets and 4𝑚𝑛 four element subsets. 

On considering 𝐶𝑚 ∧ 𝐶𝑛 , for different 𝑚 and 𝑛, it is verified that there are only  

 6𝑚𝑛 − 2𝑚𝑛 = 4𝑚𝑛distinct two element subsets of vertices having at least a common 

neighbour. 

Hence,  𝑛𝑒𝑖𝑔𝑕𝐺 𝑥 = 1 + 𝑚𝑛𝑥 + 4𝑚𝑛 𝑥2 + 𝑥3 + 𝑚𝑛𝑥4 ,𝑚 ≠ 𝑛 ≠ 4. 

Corollary 2.1.4 The neighbourhood polynomial of 𝐶𝑚 ∧ 𝐶4 is, 

1 + 4𝑚𝑥 + 10𝑚𝑥2 + 8𝑚𝑥3 + 2𝑚𝑥4 , 𝑚 ≠ 4. 

Proof.Let 𝐺 = 𝐶𝑚 ∧ 𝐶𝑛 .  𝑉(𝐺) = 𝑚𝑛. Each of the  𝑚𝑛 vertices has 4 neighbours. When 𝑛 = 4, 

the neighbours of first 𝑚𝑛 2  vertices is same as that of later 𝑚𝑛 2  vertices. That is, we have to 

consider the neighbours of only 4𝑚 2 = 2𝑚, vertices are only needed to be considered( since, we 

are finding the distinct set of vertices having common neighbours). Following the same argument 

as in lemma 2.1.3, we get  

𝑛𝑒𝑖𝑔𝑕𝐶𝑚∧𝐶4
 𝑥 = 1 + 4𝑚𝑥 + 10𝑚𝑥2 + 8𝑚𝑥3 + 2𝑚𝑥4 ,𝑚 ≠ 4. 

Remark. The neighbourhood polynomial of 𝐶4 ∧ 𝐶4 is1 + 16𝑥 + 24𝑥2 + 16𝑥3 + 4𝑥4. 

Consider figure 2,𝐺 = 𝐶4 ∧ 𝐶4 
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𝐺 = 𝐶4 ∧ 𝐶4 

   

 

Here, the each vertex of the set {𝑣1, 𝑣3 , 𝑣9, 𝑣11} have same set of neighbours as that 

of {𝑣2, 𝑣4 , 𝑣10 , 𝑣12} and vice versa. Also for the vertices {𝑣5 , 𝑣7 , 𝑣13 , 𝑣15} and {𝑣6 , 𝑣8 , 𝑣14 , 𝑣16}. 

The neighbourhood polynomial is is1 + 16𝑥 + 24𝑥2 + 16𝑥3 + 4𝑥4. 

 

Figure 2 
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Lemma 2.1.5 The neighbourhood polynomial of 𝑃𝑚 ∧ 𝐶𝑛  is 

1 + 𝑚𝑛𝑥 +  4𝑚𝑛 − 6𝑛 𝑥2 + 4𝑛 𝑚 − 2 𝑥3 + 𝑛 𝑚 − 2 𝑥4 , 𝑛 ≠ 4. 

Proof. Let 𝐺 = 𝑃𝑚 ∧ 𝐶𝑛 . 𝐺has𝑚𝑛 vertices, 2 vertices of 𝑃𝑚  is of degree 1 and  𝑚 − 2  vertices of 

𝑃𝑚 , and 𝑛 vertices of 𝐶𝑛  are of degree 2. Hence in 𝐺 = 𝑃𝑚 ∧ 𝐶𝑛 , 2𝑛 vertices are of degree 2, and 

 𝑚 − 2 𝑛 vertices are of degree 4. The neighbourhood complex of 𝐺 consists of null vertex along 

with 𝑚𝑛 single vertices. The number of two element simplexes are 

 𝑛 − 2 𝑚 +  𝑚 − 2 𝑛 + 2𝑚 + 2𝑛 𝑚 − 2 = (4𝑚𝑛 − 6𝑛), the three element simplexes count to 

4𝑛 𝑚 − 2 and there are 𝑛 𝑚 − 2  four element simplexes. Also there is no set of five more 

vertices having a common neighbour in 𝑃𝑚 ∧ 𝐶𝑛 .  

Hence the neighbourhood polynomial of 𝑃𝑚 ∧ 𝐶𝑛  is, 

𝑛𝑒𝑖𝑔𝑕𝑃𝑚∧𝐶𝑛
 𝑥 = 1 + 𝑚𝑛𝑥 +  4𝑚𝑛 − 6𝑛 𝑥2 + 4𝑛 𝑚 − 2 𝑥3 + 𝑛 𝑚 − 2 𝑥4 , 𝑛 ≠ 4. 

Corollary 2.1.6 The neighbourhood polynomial of 𝑃𝑚 ∧ 𝐶4is, 

1 + 4𝑚𝑥 +  10𝑚 − 16 𝑥2 + 8 𝑚 − 2 𝑥3 + 2 𝑚 − 2 𝑥4. 

Proof. Let 𝐺 = 𝑃𝑚 ∧ 𝐶4. Then 𝐺 has 4𝑚 vertices, of which 8 vertices are of degree 2 and (4𝑚 − 8) 

vertices are of degree 4.In 𝑃𝑚 ∧ 𝐶𝑛 , there are  𝑛 − 2 𝑚 +  𝑚 − 2 𝑛 + 2𝑚 + 2𝑛 𝑚 − 2 , two 

element subsets of vertices having at least a common neighbour. When 𝑛 = 4, first subset of  

𝑛(𝑚 − 2) two element vertices coincides with later  𝑛(𝑚 − 2) two element subsets of vertices and 

2𝑚 subsets with two elements coincides with 𝑛 𝑚 − 2  subsets of vertices. 

 Thus we have, 

 4𝑚𝑛 − 6𝑛 − 𝑛 𝑚 − 2 − 2𝑚 = 3𝑚𝑛 − 4𝑛 − 2𝑚 

                                                             = 10𝑚 − 16( 𝑠𝑖𝑛𝑐𝑒 𝑛 = 4),  

two simplexes. Also when 𝑛 = 4, the neighbours of first 2𝑚 set of vertices are same as that of later 

2𝑚 set of vertices. Hence the number of three and four element subsets are 8(𝑚 − 2) and 2(𝑚 −

2) respectively. 

 Thus for 𝐺 = 𝑃𝑚 ∧ 𝐶4,  

𝑛𝑒𝑖𝑔𝑕𝐺 𝑥 = 1 + 4𝑚𝑥 +  10𝑚 − 16 𝑥2 + 8 𝑚 − 2 𝑥3 + 2 𝑚 − 2 𝑥4. 
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Theorem 2.1.7 If 𝐺 = 𝐺1 ∧ 𝐺2, then , 𝑑𝑒𝑔 𝑛𝑒𝑖𝑔𝑕𝐺 𝑥  = ∆ 𝐺1 × ∆ 𝐺2 . 

Proof. Let  𝑢1, 𝑢2 , 𝑢3 , … , 𝑢𝑚  ∈ 𝑉 𝐺1  and  𝑣1, 𝑣2 , 𝑣, … , 𝑣𝑛 ∈ 𝑉(𝐺2). For any vertex, 𝑤𝑖 =

(𝑢𝑘 , 𝑣𝑗 ), in 𝐺,  

𝑑 𝑤𝑖 = 𝑑(𝑢𝑘) × 𝑑(𝑣𝑗 ), which follows from the definition of 𝐺1 ∧ 𝐺2 . 

𝑑 𝑤𝑖  is maximum, only if 𝑑 𝑢𝑘 = ∆ 𝐺1  𝑎𝑛𝑑 𝑑 𝑣𝑗  = ∆ 𝐺2 . Consider the neighbourhood 

complex 𝒩 𝐺  of  𝐺. The 𝑑 𝑤𝑖 , vertices adjacent to 𝑤𝑖 , forms complexes with one element, two 

elements, three elements, …, 𝑑 𝑤𝑖  elements (since, these 𝑑 𝑤𝑖  vertices have at least a common 

neighbour 𝑤𝑖) and also no [𝑑 𝑤𝑖 + 1] vertices can have 𝑤𝑖  as a common neighbour. Thus in 𝐺, 

there exists a maximal face with respect to a vertex with maximum degree. 

Also we have, 𝑛𝑒𝑖𝑔𝑕𝐺 𝑥 =  𝑥 𝑢 𝑢∈𝒩(𝐺) , which implies, 𝑑𝑒𝑔 𝑛𝑒𝑖𝑔𝑕𝐺 𝑥  , is the maximum 

cardinality of the face in the neighbourhood complex. Thus if 𝑤𝑖 ∈ 𝑉(𝐺), with 

𝑑 𝑤𝑖 = ∆ 𝐺1 × ∆ 𝐺2 ,  

𝑑𝑒𝑔 𝑛𝑒𝑖𝑔𝑕𝐺 𝑥  = ∆ 𝐺1 × ∆ 𝐺2 . 

2.2 Join of two graphs and their Neighbourhood Polynomials. 

Lemma 2.2.1 The neighbourhood polynomial of fan graph 𝐹𝑛  is  

1 +  𝑛 + 1 𝑥 +   𝑛
2
 + 𝑛 𝑥2 +   𝑛

3
 +  𝑛 − 2  𝑥3 +  𝑛

4
 𝑥4 + ⋯+ 𝑥𝑛 . 

Proof. The fan graph 𝐹𝑛 = 𝑃𝑛 ∨ 𝐾1. 𝐹𝑛consists of 𝑃𝑛 , along with edges joining every vertex 

𝑣𝑖 , 𝑖 = 1,2,…𝑛, of 𝑃𝑛 , to the single vertex 𝑢 of 𝐾1. Thus 𝐹𝑛has  𝑛 + 1  vertices.  

The neighbourhood complex 𝒩 𝐹𝑛 , of 𝐹𝑛  is, 

𝒩 𝐹𝑛 =  ∅,  𝑣1 ,  𝑣2 ,  𝑣3 ,… ,  𝑣𝑛 ,  𝑢 ,  𝑣1 , 𝑣2 ,  𝑣1 , 𝑣3 ,… ,  𝑣1 , 𝑣𝑛 ,  𝑣2 , 𝑣3 ,  𝑣2 , 𝑣4  , … ,

 𝑣2 , 𝑣𝑛 ,… ,  𝑣𝑛−1 , 𝑣𝑛  ,  𝑣1, 𝑢 ,  𝑣2 , 𝑢 ,… ,  𝑣𝑛 , 𝑢 ,  𝑣1 , 𝑣2 , 𝑣3 ,  𝑣1, 𝑣2 , 𝑣4 ,… ,  𝑣1 , 𝑣2 , 𝑣𝑛 , … ,

 𝑣𝑛−2 , 𝑣𝑛−1 , 𝑣𝑛 ,  𝑣1, 𝑣3 , 𝑢  ,  𝑣2 , 𝑣4 , 𝑢 ,… ,  𝑣𝑛−2 , 𝑣𝑛 , 𝑢 ,  𝑣1 , 𝑣2 , 𝑣3 , 𝑣4 ,… ,

 𝑣𝑛−3 , 𝑣𝑛−2 , 𝑣𝑛−1, 𝑣𝑛 ,… ,  𝑣1 , 𝑣2 , 𝑣3 , … , 𝑣𝑛  . 

From the neighbourhood complex of 𝐹𝑛  we get, 

𝑛𝑒𝑖𝑔𝑕𝐹𝑛  𝑥 = 1 +  𝑛 + 1 𝑥 +   𝑛
2
 + 𝑛 𝑥2 +   𝑛

3
 +  𝑛 − 2  𝑥3 +  𝑛

4
 𝑥4 + ⋯+ 𝑥𝑛 . 

Example  

Consider 𝐹4 = 𝑃4 ∨ 𝐾1, 
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𝐹4 

 

𝒩 𝐹𝑛 =  ∅,  𝑣1 ,  𝑣2 ,  𝑣3 ,  𝑣4 ,  𝑢 ,  𝑣1 , 𝑣2 ,  𝑣1, 𝑣3 ,  𝑣1 , 𝑣4 ,  𝑣2 , 𝑣3 ,  𝑣2 , 𝑣4 ,

 𝑣3 , 𝑣4 ,  𝑣1 , 𝑢 ,  𝑣2 , 𝑢 ,  𝑣3, 𝑢 ,  𝑣4 , 𝑢 ,  𝑣1 , 𝑣2 , 𝑣3 ,  𝑣1, 𝑣2 , 𝑣4 ,

 𝑣1 , 𝑣3 , 𝑣4 ,  𝑣2 , 𝑣3 , 𝑣4 ,  𝑣1 , 𝑢, 𝑣3 ,  𝑣2 , 𝑢, 𝑣4 ,  𝑣1 , 𝑣2 , 𝑣3,𝑣4   

From the definition of neighbourhood polynomial we have 𝑛𝑒𝑖𝑔𝑕𝐹𝑛  𝑥 =  𝑥 𝑢 𝑢∈𝒩 𝐹𝑛  . Hence,  

𝑛𝑒𝑖𝑔𝑕𝐹4
 𝑥 = 1 + 5𝑥 + 10𝑥2 + 6𝑥3 + 𝑥4. 

 

Lemma 2.2.2 The neighbourhood polynomial of 𝑊𝑛  is  

1 +  𝑛 + 1 𝑥 +  
𝑛

2
+ 𝑛 𝑥2 +   

𝑛

3
 + 𝑛 𝑥3 +  

𝑛

4
 𝑥4 + ⋯+ 𝑥𝑛 , 𝑛 > 3. 

Proof. We have 𝑊𝑛 = 𝐶𝑛 ∨ 𝐾1. Let (𝑣1 , 𝑣2 , 𝑣3 , … , 𝑣𝑛) ∈ 𝑉(𝐶𝑛)and 𝑉 𝐾1 = 𝑢. In 𝑊𝑛 , one vertex 

of the   𝑛 + 1  vertices, has 𝑛 neighbours and others has three neighbours each. 

The neighbourhood complex 𝒩 𝑊𝑛  of 𝑊𝑛  is, 

𝒩 𝑊𝑛 =  𝜑,  𝑣1 ,  𝑣2 ,  𝑣3 ,… ,  𝑣𝑛 ,  𝑣1 , 𝑢 ,  𝑣2 , 𝑢 , … ,  𝑣𝑛−1 , 𝑣𝑛 ,… ,  𝑣1, 𝑣2 , 𝑣3 , … , 𝑣𝑛  .  

 

That is, the neighbourhood complex consists of empty set, which trivially having a common 

neighbour and subsets of vertices with 𝑜𝑛𝑒 element, 𝑡𝑤𝑜 elements, 𝑡𝑕𝑟𝑒𝑒 elements, etc. up to 

𝑛 elements, with cardinalities  𝑛 + 1 ,  𝑛
2

+ 𝑛 ,   𝑛
3
 + 𝑛 ,  𝑛

4
 , … , 1(=  𝑛

𝑛
 ) , respectively. 

Hence, the neighbourhood polynomial of 𝑊𝑛  is, 

𝑛𝑒𝑖𝑔𝑕𝑊𝑛
 𝑥 = 1 +  𝑛 + 1 𝑥 +  

𝑛

2
+ 𝑛 𝑥2 +   

𝑛

3
 + 𝑛 𝑥3 +  

𝑛

4
 𝑥4 + ⋯+ 𝑥𝑛 , 𝑛 > 3. 

Figure 3 
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Example  

Consider 𝑊3 = 𝐶3 ∨ 𝐾1, 

 

𝑊3 

𝒩 𝑊3 =

 𝜑,  𝑣1 ,  𝑣2 ,  𝑣3 ,  𝑣1 , 𝑣2 ,  𝑣1 , 𝑣3 ,  𝑣2 , 𝑣3 ,  𝑣1 , 𝑢 ,  𝑣2 , 𝑢 ,  𝑣3 , 𝑢 ,    𝑣1, 𝑣2 , 𝑣3 ,

 𝑣1 , 𝑣2 , 𝑢 ,  𝑣1, 𝑣3 , 𝑢 ,  𝑣2 , 𝑣3 , 𝑢  .  

𝑛𝑒𝑖𝑔𝑕𝑊3
 𝑥 = 1 + 4𝑥 + 6𝑥2 + 4𝑥3. 

Lemma 2.2.3 Let 𝐺1 be a 𝑟 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 graph and 𝐺2 be a 𝑠 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 graph of orders 𝑚 and 𝑛 

respectively. Then 𝐺 = 𝐺1 ∨ 𝐺2 is regular if and only if, 𝑟 + 𝑛 = 𝑠 + 𝑚. 

Proof. Assume 𝐺 is regular. Let 𝑢1 , 𝑢2 , 𝑢3 , … , 𝑢𝑚 ∈ 𝑉(𝐺1)and 𝑣1 , 𝑣2 , 𝑣3 , … , 𝑣𝑛 ∈ 𝑉(𝐺2). In 

𝐺 = 𝐺1 ∨ 𝐺2, each vertex 𝑢𝑖  of 𝐺1 is joined to every vertex of 𝑣𝑗  of 𝐺2, in addition to the edges of 

𝐺1 and 𝐺2. Also since 𝐺1 and 𝐺2 are 𝑟 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 and  𝑠 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 respectively, every vertex 𝑢𝑖  

and 𝑣𝑗  of  𝐺 are of degree 𝑟 + 𝑛and 𝑠 + 𝑚, respectively. Since 𝐺 is regular 𝑟 + 𝑛 = 𝑠 + 𝑚. 

Conversely assume, 𝑟 + 𝑛 = 𝑠 + 𝑚. 

⇒ 𝑑𝑒𝑔 𝑢𝑖 + 𝑛 = 𝑑𝑒𝑔 𝑣𝑗  + 𝑚, since 𝐺1 is 𝑟 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 and 𝐺2 is 𝑠 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 

⇒ 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑎𝑛𝑦 𝑣𝑒𝑟𝑡𝑒𝑥 𝑢 𝑜𝑓 𝐺 = 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑎𝑛𝑦 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 𝑜𝑓 𝐺. 

⇒ 𝐺 𝑖𝑠 𝑟𝑒𝑔𝑢𝑙𝑎𝑟. 

Theorem 2.2.4 Let 𝐺1 and 𝐺2be any two graphs of order 𝑚 and 𝑛 respectively. 

 If 𝐺 = 𝐺1 ∨ 𝐺2 is a 𝑠 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 graph, then, 

Figure 4 
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𝑛𝑒𝑖𝑔𝑕𝐺 𝑥 = 1 +  𝑚 + 𝑛 𝑥 +   𝑚
2
 + 𝑚𝑛 +  𝑛

2
  𝑥2 +   𝑚

3
 +  𝑚

2
  𝑛

1
 +  𝑚

1
  𝑛

2
 +  𝑛

3
  𝑥3 +

  𝑚
4
 +  𝑚

3
  𝑛

1
 +  𝑚

2
  𝑛

2
 +  𝑚

1
  𝑛

3
 +  𝑛

4
  𝑥4 + ⋯+   𝑚

𝑠
 +  𝑚

𝑠−1
  𝑛

1
 + ⋯+  𝑚

1
  𝑛

𝑠−1
 +

 𝑛
𝑠
  𝑥𝑠. 

Proof. Since, 𝐺1 and 𝐺2 are any two graphs of order 𝑚 and 𝑛 respectively, in 𝐺 = 𝐺1 ∨ 𝐺2, there 

are  𝑚 + 𝑛 vertices, such that every vertex of 𝐺1 is joined to every vertex of 𝐺2 through an edge, in 

addition to the edges of 𝐺1 and 𝐺2. Thus for every 𝑢𝑖 ∈ 𝑉(𝐺), 𝑢𝑖  has 𝑛 more neighbours in addition 

to that which 𝑢𝑖  has in 𝐺1 and for every 𝑣𝑗 ∈ 𝑉(𝐺), 𝑣𝑗  has 𝑚 more neighbours in addition to that 

which 𝑣𝑗  has in 𝐺2. 

By definition the neighbourhood complex of 𝐺consists of the null set,  𝑚 + 𝑛  single vertices, 

since each has a neighbour. Also since 𝐺 = 𝐺1 ∨ 𝐺2, any two vertices either in 𝐺1 or in 𝐺2 has a 

common neighbour, also any combination of 𝑢𝑖  and 𝑣𝑗  has a common neighbour. Thus the number 

of two element simplexes are   𝑚
2
 + 𝑚𝑛 +  𝑛

2
  . 

On considering the number of simplexes with three elements, any 3 vertices of both 𝐺1 and 𝐺2 has 

a common neighbour, any 2 vertices of 𝐺1 and any 1 vertex of 𝐺2 has a common neighbour. 

Similarly any 1 vertex of 𝐺1 and any 2 vertices of 𝐺2 has a common neighbour. Thus there exists 

  𝑚
3
 +  𝑚

2
  𝑛

1
 +  𝑚

1
  𝑛

2
 +  𝑛

3
  3 − 𝑠𝑖𝑚𝑝𝑙𝑒𝑥𝑒𝑠. 

Similarly, the number of four simplexes are   𝑚
4
 +  𝑚

3
  𝑛

1
 +  𝑚

2
  𝑛

2
 +  𝑚

1
  𝑛

3
 +  𝑛

4
  , since any 

4 vertices of both 𝐺1 and 𝐺2 has a common neighbour, any 3 vertices of either 𝐺1 or 𝐺2 and any 1 

vertex of either 𝐺2 or 𝐺1 has a common neighbour any two vertices of 𝐺1 any two vertices of 𝐺2 

also have a common neighbour, for 𝐺 = 𝐺1 ∨ 𝐺2 is a regular graph. 

The argument continues for all simplexes of length 𝑠 = 𝑑𝑒𝑔(𝐺). 

Hence the neighbourhood polynomial of 𝐺 = 𝐺1 ∨ 𝐺2 is, 

𝑛𝑒𝑖𝑔𝑕𝐺 𝑥 = 1 +  𝑚 + 𝑛 𝑥 +   
𝑚

2
 + 𝑚𝑛 +  

𝑛

2
  𝑥2

+   
𝑚

3
 +  

𝑚

2
  
𝑛

1
 +  

𝑚

1
  
𝑛

2
 +  

𝑛

3
  𝑥3

+   
𝑚

4
 +  

𝑚

3
  
𝑛

1
 +  

𝑚

2
  
𝑛

2
 +  

𝑚

1
  
𝑛

3
 +  

𝑛

4
  𝑥4 + ⋯

+   
𝑚

𝑠
 +  

𝑚

𝑠 − 1
  
𝑛

1
 + ⋯+  

𝑚

1
  

𝑛

𝑠 − 1
 +  

𝑛

𝑠
  𝑥𝑠 . 
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Theorem 2.2.5 The neighbourhood polynomial of 𝐾𝑚 ∨ 𝐾𝑛  is of degree 𝑚 + 𝑛 − 1. 

Proof. Let 𝐺 = 𝐾𝑚 ∨ 𝐾𝑛 . In 𝐾𝑚 , every vertex is of degree  𝑚 − 1  and that in 𝐾𝑛  is  𝑛 − 1 . Also 

these 𝑚 vertices of 𝐾𝑚  are joined to every 𝑛 vertices of 𝐾𝑛 . Hence in 𝐺 the degree of each vertex 

belonging to 𝐾𝑚  is  𝑚 − 1 + 𝑛  and that belonging to 𝐾𝑛 is  𝑛 − 1 + 𝑚 . Thus 𝐺 is  𝑚 + 𝑛 − 1  

regular graph of order  𝑚 + 𝑛 . Thus the neighbourhood complex of 𝐺 consists of the simplexes as 

described in the theorem 2.19, and since the maximum degree of 𝐺is  𝑚 + 𝑛 − 1 , no set of 

 𝑚 + 𝑛  vertices have a common neighbour, the maximal simplex is 𝑚 + 𝑛 − 1. Hence the 

deg⁡(𝑛𝑒𝑖𝑔𝑕𝐾𝑚∨𝐾𝑛 ) is 𝑚 + 𝑛 − 1. 

Remark 

It follows from the observations and theorems that, if 𝐺 = 𝐺1 ∨ 𝐺2where 𝐺1 and 𝐺2are any two 

graphs of order 𝑚 and 𝑛 respectively, 

𝑚𝑎𝑥 𝑚 + 2, 𝑛 + 2 ≤ deg 𝑛𝑒𝑖𝑔𝑕𝐺 𝑥  ≤ 𝑚 + 𝑛 − 1. 

2.3 Symmetric difference of two graphs and their Neighbourhood Polynomials. 

Theorem 2.3.1 The 𝑑𝑒𝑔 𝑛𝑒𝑖𝑔𝑕𝐺 𝑥  = 𝑚, where 𝐺 is the symmetric difference of any graph 𝐺1 

of order 𝑚 and 𝐾2. 

Proof. Let 𝐺 = 𝐺1 ⊕𝐾2. Then following the definition of symmetric difference of any two graphs 

𝐺1 and 𝐺2, of orders 𝑚 and 𝑛 respectively, the degree of any vertex 𝑢 =  𝑢𝑖 , 𝑣𝑗   (where 𝑢𝑖 ∈

𝑉 𝐺1  𝑎𝑛𝑑 𝑣𝑗 ∈ 𝑉 𝐺2  ) in 𝐺 is, 

 𝑑𝑒𝑔 𝑢 = 𝑛 × 𝑑𝑒𝑔 𝑢𝑖 +  𝑚 × 𝑑𝑒𝑔 𝑣𝑗  − 2𝑑𝑒𝑔 𝑢𝑖 × 𝑑𝑒𝑔 𝑣𝑗  . 

Hence if 𝐺 = 𝐺1 ⊕𝐾2, for any vertex,  𝑤 =  𝑢𝑖 , 𝑣𝑗   in 𝐺, we have,  

 𝑑𝑒𝑔 𝑤 = 2 × 𝑑𝑒𝑔 𝑢𝑖 +  𝑚 × 1 − 2 ×  𝑑𝑒𝑔 𝑢𝑖 × 1. (Since,𝑣𝑗 ∈ 𝐾2 , 𝑑𝑒𝑔 𝑣𝑗  = 1) 

Thus  𝑤 = 𝑚 . 

Hence on considering the neighbourhood complex 𝒩 𝐺  of 𝐺, there exists no simplex of length 

(𝑚 + 1), as every vertex is of degree 𝑚, there exists simplexes of length 1, 2, 3, … ,𝑚. Since, 

𝑛𝑒𝑖𝑔𝑕𝐺 𝑥 =  𝑥 𝑢 𝑢∈𝒩(𝐺) , the degree of 𝑛𝑒𝑖𝑔𝑕𝐺 𝑥  is equal to the length of maximal simplex. 

Hence, 𝑑𝑒𝑔 𝑛𝑒𝑖𝑔𝑕𝐺 𝑥  = 𝑚, where 𝐺 = 𝐺1 ⊕𝐾2. 
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Theorem 2.3.2 The  𝑛𝑒𝑖𝑔𝑕𝐺 𝑥  = 𝑚 + 𝑛 − 2 , if 𝐺 = 𝐾𝑚 ⊕𝐾𝑛 . 

Proof. Let 𝐺 = 𝐾𝑚 ⊕𝐾𝑛 . Then degree of any vertex 𝑤 =  𝑢𝑖 , 𝑣𝑗  (where 𝑢𝑖 ∈ 𝑉 𝐾𝑚   𝑎𝑛𝑑 𝑣𝑗 ∈

𝑉 𝐾𝑛  ) in 𝐺 is,  

𝑑𝑒𝑔 𝑤 =  𝑚 − 1 𝑛 +  𝑛 − 1 𝑚 − 2 𝑚 − 1  𝑛 − 1  

    = 𝑚 + 𝑛 − 2.  

Also, we have 𝑛𝑒𝑖𝑔𝑕𝐺 𝑥 =  𝑥 𝑢 𝑢∈𝒩(𝐺) . The elements of the neighbourhood complex 𝒩 𝐺  of 

𝐺, consists of the zero simplex, 𝑚𝑛 - single vertices as each has a neighbour, 2 − simplexes, 3 − 

simplexes, etc. to  𝑚 + 𝑛 − 2 −simplexes and there exists no simplex of length  𝑚 + 𝑛 − 1  or 

more. Hence the degree of neighbourhood polynomial of 

 𝐺 = 𝐾𝑚 ⊕𝐾𝑛 , is  𝑚 + 𝑛 − 2 . 

Theorem 2.3.3 If 𝐺 = 𝐾𝑚 ⊕𝐾𝑛 , then 𝑛𝑒𝑖𝑔𝑕𝐺 𝑥 = 1 +  𝑚𝑛 𝑥 +  𝑚𝑛
2
 𝑥2  +  𝑛  𝑚

3
  +

𝑛  𝑚
2
   𝑚 − 2   𝑛 − 1 + 𝑚  𝑛

2
   𝑛 − 2   𝑚 − 1 + 𝑚  𝑛

3
  𝑥3 + ⋯+ 𝑚𝑛  𝑠

𝑖
  𝑥𝑖 + ⋯+ 𝑚𝑛𝑥𝑠 ,

𝑠 = 𝑚 + 𝑛 − 2, 𝑠 2 ≤ 𝑖 ≤ 𝑠. 

Proof. 𝐺 = 𝐾𝑚 ⊕𝐾𝑛 , has 𝑚𝑛 vertices, each of these vertices have (𝑚 + 𝑛 − 2) neighbours, 

(which follows from the definition of symmetric difference of two graphs). The neighbourhood 

complex of  𝐺 consists of zero simplex,  1 − 𝑠𝑖𝑚𝑝𝑙𝑒𝑥𝑒𝑠, since each of the 𝑚𝑛 vertices has a 

neighbour. Any two of 𝑚𝑛 vertices in 𝐺 = 𝐾𝑚 ⊕𝐾𝑛  has a common neighbour, for consider 

vertices  𝑢𝑖 , 𝑣𝑗   and  𝑢𝑘 , 𝑣𝑙  of 𝐺, where 𝑢𝑖 ∈ 𝑉(𝐾𝑚 ) and  

𝑣𝑗 ∈ 𝑉(𝐾𝑛). Then there exists at least one vertex  𝑢𝑖 , 𝑣𝑙  of 𝐺 which is common to both  𝑢𝑖 , 𝑣𝑗   

and  𝑢𝑘 , 𝑣𝑙 , by the definition of 𝐾𝑚 ⊕𝐾𝑛 . Thus the number of two element simplexes in the 

neighbourhood complex of 𝐺 are  𝑚𝑛
2
 . The three element simplexes are calculated as 𝑛  𝑚

3
  +

𝑛  𝑚
2
   𝑚 − 2   𝑛 − 1 + 𝑚  𝑛

2
   𝑛 − 2   𝑚 − 1 + 𝑚  𝑛

3
  (taking 𝑚, 𝑛 > 3). Continuing the 

same process, we get 𝑖 − 𝑠𝑖𝑚𝑝𝑙𝑒𝑥𝑒𝑠 to be 𝑚𝑛  𝑠
𝑖
 , where 𝑠 = 𝑚 + 𝑛 − 2 and 𝑠 2 ≤ 𝑖 ≤ 𝑠, and 

since the maximal simplex of 𝐺 = 𝐾𝑚 ⊕𝐾𝑛 , is of length 𝑚 + 𝑛 − 2, as there are 𝑚𝑛 − 𝑠𝑖𝑚𝑝𝑙𝑒𝑥𝑒𝑠  

of length 𝑚 + 𝑛 − 2. Thus we get  

𝑛𝑒𝑖𝑔𝑕𝐺 𝑥 = 1 +  𝑚𝑛 𝑥 +  
𝑚𝑛

2
 𝑥2  

+  𝑛  
𝑚

3
  + 𝑛  

𝑚

2
   𝑚 − 2   𝑛 − 1 + 𝑚  

𝑛

2
   𝑛 − 2   𝑚 − 1 + 𝑚  

𝑛

3
  𝑥3

+ ⋯+ 𝑚𝑛  
𝑠

𝑖
  𝑥𝑖 + ⋯+ 𝑚𝑛𝑥𝑠 , 𝑠 = 𝑚 + 𝑛 − 2, 𝑠

2 ≤ 𝑖 ≤ 𝑠. 
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Example  

Consider figure 5,  𝐺 = 𝐾5 ⊕𝐾4 

 

 

 

 

The neighbourhood complex of 𝐺 consists of the null simplex, 20, 1 − 𝑠𝑖𝑚𝑝𝑙𝑒𝑥𝑒𝑠 of single vertex. 

Every pair of vertices arbitrarily taken has a common neighbour, consider the vertices  𝑣1 , 𝑎  and  

 𝑣5 , 𝑐  which has a common neighbour  𝑣1 , 𝑐 . Thus there are  20
2
 = 190 two simplexes. 

Considering the neighbours of each vertex and finding out the possible 

𝐺 = 𝐾5 ⊕𝐾4 

Figure 5 
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 3 − 𝑠𝑖𝑚𝑝𝑙𝑒𝑥𝑒𝑠, and on cancelling the repetitions we get the number of 3 − 𝑠𝑖𝑚𝑝𝑙𝑒𝑥𝑒𝑠, in 

𝐾5 ⊕𝐾4 to be 660 .( In 𝐾5 ⊕𝐾4 each vertex has 5 + 4 − 2 = 7 neighbours and 7 2 = 3.5). 

There are 20 ×  7
4
 = 700 , 4 − 𝑠𝑖𝑚𝑝𝑙𝑒𝑥𝑒𝑠, 20 ×  7

5
 = 420, 5 − 𝑠𝑖𝑚𝑝𝑙𝑒𝑥𝑒𝑠, 20 ×  7

6
 =

140, 6 − 𝑠𝑖𝑚𝑝𝑙𝑒𝑥𝑒𝑠 and 7 − 𝑠𝑖𝑚𝑝𝑙𝑒𝑥𝑒𝑠 count to 20, for the simplexes 𝑖 = 4, 5, 6, 7, 𝑖 > 7
2 , and 

there is no repetition of the same simplex. Thus, 

 𝑛𝑒𝑖𝑔𝑕𝐺 𝑥 = 1 + 20𝑥 + 190𝑥2 + 660𝑥3 + 700𝑥4 + 420𝑥5 + 140𝑥6 + 20𝑥7. 

3.Conclusion and further scope 

The neighbourhood polynomials on different binary operations on graphs are obtained and  

neighbourhood polynomials of other binary operations on graphs are still to be obtained  
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